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Abstract 
The effect of random wave  fields on passive tracer spatial variations is studied. We derive a 

closed  form  expression  for the spatial  autocorrelation  function (or power spectrum) of the tracer 
fluctuations that is  quantitatively  accurate so long as wave  field nonlinearities  are  small.  The  theory 
is illustrated for the case of long internal  gravity waves in the ocean. We find that even if the 
spectrum of the advecting velocity  field  is a pure power  law, the tracer  spectum  has  two  separate 
power  law subranges. Most  important to oceanographic  applications,  in the larger  scale  region 
the effective horizontal  compressibility of the wave  velocity  field  becomes a dominant  factor of the 
tracer  variations. In such  cases, the concentration  spectrum becomes  approximately  proportional to 
the  spectrum of the wave potential energy.  The latter, which  decays  with  increasing  wavenumber 
much more rapidly than  that known for two-dimensional  eddy turbulence,  is.contirmed by satellite 
observations  in  wave-dominated  ocean  regions. 

1 Introduction 

Spatial  variations of sea  surface  temperature, chlorophyll concentration and  other  tracers reflect, among 

other  factors, a pattern of water  motions in the  upper ocean layer. In  the  range of scales from loo-lo2 

kilometers, oceanic motions are essentially two-dimensional and  their kinetic  energy  spectrum E ( k ) ,  

according to theoretical  predictions for two-dimensional eddy  turbulence, is controlled by the direct 

inertial  cascade of enstrophy: E ( k )  = C n ~ ; ' ~ k - ~ ,  where en is the  rate of enstrophy  transfer  in  the 

spectral  cascade  and Cn is a universal constant.  Present  theory of turbulent  transport  then predicts 

the wavenumber spectrum of a spatially-varying field of tracer  concentration to  be proportional to k" 

(see, eg., [l, 2,  31). Many  observations, however,  yield  much higher rates of spectral roll-off (see, e.g., 

[4, 5, 61 and references therein) - as fast as - in the  range 1 5 2 n / k  5 100km. While various 

explanations have been suggested for these higher rates (see, e.g., [7]), none of them questioned the 2-D 

eddy  turbulence as an  important dynamical  factor of tracer dispersion on  these short scales. 

In the present work we study fluctuations  originating from a different source of oceanic motions, 

namely those caused by random waves. While the formal  theory  presented  here is general, the results 

will be specialized and applied in the  end to  the case of baroclinic inertia  gravity (BIG) waves, since 

these waves represent  one of two major classes of large-scale oceanic motions. The theory of passive 
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tracer fluctuations in random wave  fields presented in this  paper  should lead to  better  understanding of 

the observed patterns of tracer field concentration, including patchiness of biological fields. 

As will be  shown in Sec. 3, in certain areas of the ocean  BIG waves dominate  the kinematics of the 

passive tracer field, at least on scales 1 5 2 ~ / k  5 1OOkm. Such areas include many  high-latitude regions 

in which eddy  turbulence  tends to be generally weak. In general, the kinetic energy of eddy turbulence 

in the world ocean  (excepting, of course, the  strong ocean  current  areas  such as the Gulf Stream or the 

Antarctic  Circumpolar Current region) rapidly decreases with  an increasing latitude [9]. It is well  known 

([8])  (and  has been  confirmed  by numerical  models of ocean  dynamics [9]) that  the characteristic size  of 

ocean eddies generated  by baroclnic instability of ocean  shear flows  is comparable to  the local Rossby 

radius of deformation.  At  high  latitudes, the baroclinic Rossby radius is under 20km. The energy of 

vortical turbulence is transferred from this  range to larger scales through  the inverse Kolmogorov-type 

spectral cascade, and  the velocity spectrum  behaves  approximately as k-5 /3 .  The  spectrum of BIG 

wave turbulence in the inverse cascade  range  behaves as ([lo]),  and therefore grows at a more rapid 

rate as k decreases. Thus, if the energy of both  the vortical and  the wave motions is generated  at high 

wavenumbers, the relative intensity of eddy  turbulence at wavenumbers  below the generation range (i.e, 

on scales greater  than, say, 20km) could drop well  below that of BIG wave turbulence. Spatial variations 

of tracer fields may thus be affected by  wave motions in a rather broad spectral range. The passive 

tracer  spectrum  measured by  Gower et  al. (1980) [4] at 60°N latitude (where the Rossby radius is  below 

10 km), reproduced in Fig. 1, confirms this theory. This will be discussed  in more  detail  and  supported 

with  more recent experimental  data in Sec. 3. 

Passive scalar  dynamics is governed by the  transport  equation 

for the concentration field q(x ,  t )  advected by a random wave velocity field v(x, t ) ,  which in this work 

will  be taken  to be spatially-homogeneous  and”statistical1y  stationary. Molecular  diffusion,  which  is 

generally extremely small on the scale of turbulent diffusion,  is neglected. It is commonly  assumed that 

v is incompressible, V . v  = 0, but for  wave  fields,  where  one  is interested mainly in horizontal transport, 

one is  led naturally  to effective two-dimensional descriptions - such as the shallow water  equations - 

where the variation of the height of the free surface, or of isopycnal surfaces, leads to  an effectively 

compressible horizontal velocity field v. This  property will turn  out  to be crucial to  the  strong influence 

of the wave  field  on the passive tracer concentration field: the compressional part of the wave  field leads 

directly to  fluctuations in the  tracer  concentration. In all that follows  all vectors will  be restricted  to 

the horizontal plane. 
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We  will derive a closed-form solution for the  autocorrelation function 

in which the average is  over the  appropriate  ensemble of  wave fields determined by the  statistics of v. In 

contrast  to  the classical problem of particle dispersion by eddy  turbulence (reviewed, e.g., in  Chapter 5 of 

[12] and, more recently, in [13]) where  no small parameter exists, wave-induced dispersion can be  treated 

in a rigorous, controlled mathematical fashion [14, 151. The derivation is based  on the short-correlation 

approximation (reviewed, for example, in [16]) which, in the case of wave turbulence, is well justified: the 

time scale of typical wave oscillation periods (which  is of the  same  order as the  autocorrelation timescale 

for the  fluctuating field q ( x , t ) )  is  much shorter  than  the timescale on which the evolution of ( q ( x , t ) ) ,  

(q(x1, t )q(xp,  t ) ) ,  etc. is observed. 

We find also that even if the advecting velocity  field has a pure power law turbulent  spectrum,  there 

emerge two separate power  law subranges in the  tracer  spectrum. It is found that at larger scales a 

linearized version of the passive tracer  transport  equation is valid, and leads to a power-law dominated 

by the compressive part of the velocity  field.  However, at smaller scales, essentially nonlinear effects 

dominate,  and a different  power-law obtains. 

The closed-form expression for R(r) obtained in this work is rather general and applies to either 

linear or nonlinear waves of an  arbitrary  nature - provided  only that  their  nonlinearity is  sufficiently 

weak.  Conversely, the wave-induced  diffusion studied in [14, 151 is a second-order effect, associated with 

the wave nonlinearity, and vanishes  for purely linear waves. Thus,  the present effect is much stronger 

and easier to observe. 

2 Theory of tracer  fluctuations 

2.1 Quick derivation 

In order to  understand, at the simplest possible level, the direct relationship between passive scalar 

statistics  and  statistics of the velocity  field v, consider the limit in  which v is small. Let Q be the overall 

mean  tracer  concentration,  and  assume  that  the  fluctuating part q ( x )  - Q is also small. This is actually 

an independent  assumption since the size of the  latter is set by initial conditions and may  be large even if 

the former is small. The  latter assumption will be lifted in the formal derivation in the  next subsection. 

Linearizing (1) one  obtains 

atq = -qv. (3) 

In most  cases the full three-dimensional field  is incompressible, so one is assuming  here  a projected 

description in which  only the horizontal velocity components are taken  into  account, and q has been 
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vertically integrated.  Such a description may  be rigorously derived [15], but we shall not discuss this 

procedure  further here. Fkom (3) it immediately follows that 

in which qo(x) = q(x,  0) is the  initial concentration field, the average is  over the ensemble of velocity 

fields v, and 

G i j ( ~ - ~ ‘ , t - t ’ ) = ( v i ( x , t ) v j ( ~ ‘ , t ’ ) )  (5) 

is the velocity correlator.  Noting that for any function f ( t )  that decays to zero rapidly for It1 > T ,  where 

T is the decorrelation time of the wave  field, 

00 

+ t m  - LW dslslf(s), 

where f (w) is the Fourier transform of f ( t )  and  the  last line  follows  for It1 > T ,  one  obtains 

1 i j  L (7) 

00 

AR(r, t )  -+ q2 aiaj -tGij(r, w = 0) + dslslGij(r, s ) ]  . 

The term linear in t represents diffusive decorrelation - the coefficient Di, = $Sij(O), where $ j (w)  = 
G i j ( 0 , w )  is the frequency spectrum, in fact represents the lowest order result for the wave-induced 

diffusion tensor [15]. Now, for wave  fields it transpires  that Gij(r’,w) vanishes in a neighborhood of 

w = 0: for  BIG  waves the dispersion relation has a gap  about w = 0 given  by the Coriolis parameter f ,  

while  for other  types of waves w = 0 corresponds to waves of infinite wavelength which do  not exist in 

the ocean. The  term linear in t therefore vanishes to lowest order  and,  after a transient of duration 7, the 

autocorrelation kernel relaxes to  the  time independent form  given  by the second term in (7). Converting 

the  time integral to a frequency  integral,  this may be  expressed in the form 

and  its  spatial Fourier transform is 

In which & i j ( k , w )  is the full spatio-temporal Fourier transform of Gij(r, t ) .  Now,  for  wave  fields & i j  is 

nonzero only on surfaces determined by the wave dispersion relation w(k): 
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in  which Fjj(k)  is the wavenumber  spectrum.  One therefore obtains finally the simple result 

where FL(k) = &Fij(k) is the longitudinal (compressional) part of the wavenumber  spectrum. 

The fact that only FL enters is obvious in retrospect since the divergences imply that only the longitudinal 

part of v enters (4), and  this exhibits the direct connection  between the compressive nature of v and 

fluctuations in the  tracer  concentration. For an isotropic spectrum  and dispersion relation, (11) reduces 

to 

Notice that (4) implies that  the wave spectrum  alters  the  tracer  spectrum additively. Thus suppose 

that  at  time t = 0 there exists a “background”  spectrum &(k) obtained  from the  spatial Fourier 

transform of 

&(x - x/) = [QO(X)~O(X~~lav ,  (13) 

in which,  for the purposes of this calculation, we assume that  the initial condition qo(x) is characteristic 

of transport processes excluding BIG waves. The initial condition is therefore stochastic in character 

and [.Iav then denotes an  appropriate ensemble average. For a large enough  statistically homogeneous 

region A ,  an equivalent operational definition is 

in which the dimension is d = 2 for most applications, but we keep d general for computational con- 

venience and generality. A full theory, which  is  beyond the scope of this work, would have to account 

simultaneously for the effects of the (possibly interacting) vortical eddy and wave field modes. We may 

suppose, however that  vortical motions are slow  on the scale of a typical BIG wave period,  and hence 

that we may ignore further vortical motions while we consider the evolution of q on  such  time scales. 

One sees from the above calculation that  after a time of order  the wave  field decorrelation time 7, that 

the full observed  spectrum fi(k),  obtained from the Fourier transform of 

“equilibrates” to  a new steady  state, given by the sum 

&(k) = &(k) + h k ( k ) ,  (16) 

that incorporates the  spectrum of the BIG wave  field.  However, the  additive  nature of this  spectral 

renormalization means, in particular,  that observation of the effects of waves on passive tracer fluctua- 

tions in any  particular  part of the  spectrum requires that  the wave  energy spectrum  be of the  same order 
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or larger than  the eddy  energy  spectrum. If such is the case, this  then provides a possible explanation 

for the more rapid than expected fall-off  in the observed  spectrum of concentration field fluctuations: 

see  Sec. 3 below  for a more detailed discussion. 

2.2 Formal theory 

In order to confirm the content of (13) and (16) we turn  to a full theory of passive tracer  fluctuations. 

This will  allow us to evaluate the  range of validity of the quick derivation and  to  understand  the origin 

of any corrections. The results derived in this subsection will be valid  for an initial qo(x) with  arbitrarily 

large fluctuations, so long as v is at most weakly nonlinear. 

The formal  theory [15] is based  on a Lagrangian  representation of the passive scalar  distribution. Let 

&(s)  be the (Lagrangian) position of a fluid particle a t  time s, provided  this  particle has been (or will 

be) found at point x at time t. As shown in [15], the  tracer concentration field may then  be represented 

in the form 

q ( x ,  t )  = / ddz’qo(x’)6[x - z,~o(t>] = q ~ [ Z ~ t ( o > ] d e t [ b Z ~ t ( O ) / ~ x ] ,  (17) 

where qo(x) = q ( x ,  t = 0) is the  initial concentration field, and  the  Jacobian  determinantal factor 

accounts for the “compressibility” of the horizontal velocity  field v in the horizontal plane x ,  i.e., for the 

fact  that V . v # 0. 

The calculation proceeds as follows.  Using the  random walk representation,  the double-ensemble 

averaged equal-time autocorrelation function is  given  by 

ddyl&(y - Y~)eik.(x-y)+ik’.(x’-y’)e--X(k,k’;y-y‘,t) f 

where in the  last line the Fourier representation of the delta-functions has been used and,  letting 

AZ,o(t) E Z,o(t) - y, we define the  characteristic functional 

Changing variables to r‘ = y-  y‘ and Y = (y+y‘)/2, we see that  the only dependence of the  integrand in 

(18) on the center of mass variable Y is through  an exponential factor exp i (k+k‘) .Y.  The  Y-integration 

therefore produces a delta function enforcing k + k‘ = 0 .  One  obtains  then 
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in which the integration kernel K is  given by 

~ r ,  r’, t )  = J ddk eik,(r-r’)-X(k,-k;r’,t) 

Noting that &(k) = (27r)%j22s(k) + &(k) and fi(k) = (2~)~$2s (k)  + &k) contain delta-function pieces 

coming from the fact that  their  real space  forms  asymptote to q2 for large T ,  in Fourier space  one  obtains 

the equivalent form 

in which R is  given  by 

The  subtraction 

is required to eliminate the corresponding delta-function terms in k itself. We will  see that  the quick 

result of the previous subsection emerges  in an  appropriate limit from the first two terms in (22). 

To evaluate K more explicitly an  approximate scheme  for computing X must  be developed. As shown 

in [15], for  wave  fields there exists a well defined perturbation theory in the small parameter U O / C O ,  

where uo = is the typical particle velocity and Q is the typical phase  speed of the waves.  Under 

typical ocean conditions one finds U O / Q  = O(l0-’). The  perturbation  theory is implemented first by 

performing a cummulant  expansion  in  powers of AZ: 

X(k, -k; y - f , t )  = i * (k * [AZyo(t) - AZyo(t)]) 
1 ’  

+ $ { k .   p z y o ( t >  - ~ z ~ ~ ( t ) ] ) ~ ) ~  + ~ [ ( k ~ ~ t ) ~ ] ,  (25) 

in which the  subscript c indicates that  the  product of the averages should  be subtracted.  The  first 

term represents the mean relative drift of two particles a distance r’ apart. Since we are considering a 

homogeneous situation, so that (AZyo(t)) is independent of y ,  this  term vanishes identically. Defining 

the Lagrangian correlator 

and neglecting all  higher order terms in X (which  is  valid  for small ~ O T ,  i.e., on length scales larger 

than  the typical distance travelled by a tracer  particle in a typical wave period - roughly a factor U O / Q  
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times the dominant wavelength), we obtain  then 

in which r;' is the inverse of the  matrix r,j. The kernel K therefore reflects explicitly the Lagrangian 

autocorrelations. The  theory  presented in [15] now also allows one to evaluate rij perturbatively in 

terms of Eulerian velocity correlators of the wave  field. First, one  has the  exact defining relation 

t 
AZ,o(t) = dsv(Z,o(s),  s).  

Second, if AZ,o(t) = O(u0t) is small compared to  the typical length scale of variation of v(y ,  t )  (given 

by the typical wavelength X0 =  to, where t o  is the wave period), i.e., if uot/q,to is small (which  will be 

the case if t is not too much larger than t o  - we  will see  below that we only  need t up to  the decorrelation 

time T ,  which  is indeed typically of the same order as t o )  one  may  simply replace v ( Z , , ~ ( s ) ,  s )  by its 

Eulerian counterpart v(y ,  t ) ,  with corrections of relative order uo/q, (which  may be  computed in a 

gradient expansion of v [15]). Thus, in terms of the Eulerian velocity correlator (5), one  obtains to 

lowest order 

rt r t  
r i j ( r , t )  = 1 dsIo  ds'[2G,j(O,s - s') - Gij(r ,s  - s') - Gij(-r,s - s')], 

with corrections of relative O ( u i / d ) .  Using (6)  one  obtains 

00 

r i j ( r , t )  + t [ G i j ( O , O )  - Gij(r,O)] - d ~ l ~ l [ G i j ( O , ~ )  - Gij(r,s)] + ( i  +) j ) ,  t > T. (30) 

The  term linear in t once again vanishes  for wave turbulence, and after a transient of duration T ,  the 

autocorrelation kernel relaxes to the  time independent form 

with 
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and therefore 

ddk F,j(k) + Fji(k) 
= ’./ (2.)d w(k)2 

The Fourier transform of ;iij(r) E yij(m) - yij(r) is then 

(34) 

Higher order corrections actually  produce a linear time  dependence  with corrected diffusion  coefficient 

of relative O(ug/4) [15] which then produces diffusive decorrelation on a much larger time scale of 

O($T/t&. 

2.3 Calculation of spectral  renormalization 

The effect of the kernel K on the background  autocorrelation function &(k) depends crucially on the 

range of k that one is considering. The result (32) is valid so long as k2 times the leading [relative 

O(u;/%)] corrections to (29) are small, i.e., if k 2 u ; ~ ’ / 4  w (kX0)2(u0/~)4 << 1, where X0 - @to is a 

characteristic length determined by the  spectral peak frequency. Thus k should be small compared to 

$/u& - Q / u ~ & ,  where & = uoto is the typical distance travelled by the  tracer  particle in a dominant 

wave period. Since  is typically of order lo2, this  puts  the upper  bound  on allowed k nearly two 

decades  into the  inertial range of v. Due to  the complexity of the relations (20) and (22), however, the 

inertial  range power  law spectra of v do not lead immediately in the same  range  to simple power  law 

spectra for q. Rather, as we  now demonstrate,  although  the  inertial  range  behavior of v determines that 

of q,  different spectral power  laws for q are exhibited in different ranges of k .  

Let  us first rederive (16). Suppose that k is  sufficiently small that k2yij(r) is small, i.e., / c ~ ( u o T ) ~  - 
(kXo)2(uo/q)2 << 1. This requires then  that k be small compared to Q/UOXO - l/&, limiting it to less 

than  a decade  into the  inertial range. One may then  expand IZ‘,(k, k’) in the form 

r 1 

Inserting this into (22), the first term reduces precisely to (11) and  one  obtains (IC), but now with 

leading corrections: 
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The original quick derivation was based  on the assumption that fluctuations in q were small compared 

to  the mean Q, i.e., that &(k) << tj2. Under  this condition the second line of (37) is small compared to 

the first two terms,  and (16) is rigorously recovered. 

We remark in passing that  the k-space approximation used in (36) may also be implemented in the 

real space version  form (31). The small k limit is equivalent to  the limit where r is  sufficiently large that 

r,j(r') is slowly varying over the  range of r' for  which the exponential numerator in (31) is not vanishingly 

small, i.e., the limit where the replacement of rij(r') by 'yij(r) in the exponential is permitted.  The real 

space  form of (37) is then  obtained  by  making  this  replacement  and  then  performing a second order 

Taylor  expansion of the  determinant denominator of the right hand side of (31) in the difference r' - r. 

Suppose  next that l/& 5 k << Q/UO&, so that  the Taylor expansion of the exponential is no longer 

appropriate. In the real space form this means that r is small enough that rij (r') is varying  substantially 

over the range where the exponential numerator in (31) is nonvanishing. The analysis in this regime is 

most  simply carried out directly in real space. To  simplify the calculations we will consider only the case 

where the  spectrum of v is isotropic, and yij(r) = y(r)6ij is diagonal. Isotropy actually allows a more 

general form  with  independent longitudinal and  transverse  components, ~ L ( T )  and ~ T ( T ) ,  but we treat 

here only the simplest case y~ = y ~ .  One  obtains  then 

Since ~ ( r ' )  vanishes as I' -+ 0 this kernel becomes a delta-function in r at this point. For T' away from 

the origin, K roughly  averages &(r') over an area of radius a. The behaviour of the Fourier spectrum 

&(k)  at large k reflects  itself  in the behavior of &(r)  at small r. Thus, if the  spectrum decays rapidly, 

&(r) will have a Taylor  expansion in r2 about  the origin. If the  spectrum decays as a slow  power law, 

k-(d+Q) (with dimension d = 2 in the present case),  then  one will  have a leading behavior of the form 

&(r)  = &(0)[1 - AT"] (with a < 0 permitted). Similarly, if the BIG  wave spectrum  decays as a slow 

power law, one will  have the leading behavior y(r) = BrO with, typically, 0 < p < 2. 

Given the two exponents a and p, the final question we address is the resulting leading behavior 

R ( r )  = R(O)[1 - Cr'"]. In particular,  what is the function p ( a , P ) ?  This function can be inferred from 

the analysis of the integral (48) in the Appendix A with the identification u = -a - d ( 2  - P ) / 2 .  In 

addition  to  analytic  contributions  to R ( r ) ,  there is a leading nonanalytic  contribution  with  exponent 
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This  exponent  then translates  into a large k Fourier space  (angular  integrated)  spectral  form - k-P with 

p ( C Y , p ) = p ( c y , P ) + d - ( d - l 1 ) = 2 ( Q + d ) / P + l - d .  (40) 

3 Discussion  and  conclusions 

Equations (16) and (39) are  the basic results of this  paper.  One sees that even if the initial concentration 

field correlator &(r)  is analytic [corresponding to rapid decay of &(IC) for large k ] ,  indicating a smooth 

initial condition, these  equations will produce nontrivial power  law behavior  in k(k). Considering first 

the range k:Xo < Q / U O  where (16) is  valid, if F ( k )  NN F ~ k - ~ - q  and w ( k )  x Coke in this  range,  then  the 

angle integrated  tracer  spectrum will  vary as 

For  BIG  waves,  Now, as alluded to in the  Introduction,  the (angle integrated) BIG  wave  wavenum- 

ber  spectrum kd-IF(k )  (with d = 2) is observed to vary as k-4/3 for ck >> f ,  This  corresponds to 

F ( k )  - k-7 /3 ,  and hence q = 1/3. In this  range  one  has  simply w ( k )  x ck ,  i.e., C = 1, and we obtain 

then kd- lAk(k )  - k-P, with p = 4/3. This result assumes that  the direct energy  cascade  dominates. 

However,  BIG  waves also have an inverse cascade of wave action that yields kd- lF(k)  - corre- 

sponding to q = 2 and hence kd"A8(k) - k-P with p = 3. Since the wavenumber range over  which 

most of the  external  energy/action  input occurs is not  known, the precise  wavenumber separating  the 

direct and inverse cascades is not known. Both  theory  and observations [ll] seem to  indicate  that 

behavior  may  extend to  length scales as short as 20km, with k-4/3 behavior observable only on yet 

shorter scales. It is therefore possible that it is precisely under these circumstances that k-3  tracer 

spectra  are being observed. Clearly, depending  upon the precise ocean conditions, and hence the exact 

balance between the various terms  entering  the  determination of a ( k ) ,  the present theory allows an 

effective tracer  spectral  exponent  anywhere within the observed  range 1 5 p 5 3. 

Consider  next the  range Q / U O  < Aok c ( ~ g / u ~ ) ~  in which (39) is  valid. This  equation will produce 

a series of singularities corresponding to non-negative even integer values of cy. The leading singularity 

(corresponding to cy = 0) takes the form (in d = 2), 

corresponding to a Fourier space  spectral decay k-(d+f i )  = k-"?. Interestingly, the more  fractal like is 

the wave velocity  field spectrum  (the smaller the value of P ) ,  the less fractal like  is (the steeper is the 

fall off of) the passive tracer  spectrum.  The l / k  theoretical (angular  integrated)  spectrum alluded to 
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in the  introduction corresponds to  the case of a logarithmic divergence in &(r) as r + 0. This yields, 

effectively, Q = 0 and (42) is predicted to be valid, up  to possible logarithmic corrections. A value p = 1 

would then  produce a wave-field renormalized spectrum, consistent with observations. 

Let us now derive a form  for p for a given behavior of the frequency or wavenumber  spectrum. The 

full wavenumber-frequency  spectrum for a general wave  field is given by (10) in which the dispersion 

relation is w(k) = d m  for  BIG  waves, where f = 2Rsin(+) is the Coriolis parameter (0 begin 

the  earth's  rotation frequency and q5 being the  latitude). In the isotropic approximation in which we 

work, we assume F&(k) = $F(k)&j and consider only isotropic w(k) = w ( k )  so that  the  total kinetic 

energy  spectrum  (the  trace of @ i j )  is 

@ ( k , w )  = 2nF(k){6[w - w ( k ) ]  + 6[w + w ( k ) ] } .  

jFrom (38) and (56) one  then  obtains 

Thus, if F ( k )  M Fokbd-q and w ( k )  M Coke for large k ,  y(r) will have a singular  term  varying as 

(43) 

in which (56) and  relation 6.561.14 (p. 684) of [17] has been  used. 

If q + 2C < 2 then  this will be the leading term,  and one  immediately identifies p = q + 26. On the 

other  hand, if q + 2C > 2 then  this singular term will be subleading, and y(r) will have a leading r2 term 

given by 

In this case one would then identify p = 2, and bne  then infers the general relation, 

/3 = min{q + 26, 2). (47) 

For q > 0 and 6 = 1 one  has 26 + q > 2 and we infer that = 2 in  all the cases discussed above. The 

results in the Appendix A [case (vi)]  then imply that p = a: the initial spectrum is unrenormalized in 

this  range of larger k .  

We conclude that  the effects of BIG  waves  on the passive tracer  spectrum are expected to be strongest 

only  in the smaller k range where (12) and (16) are valid.  For  BIG  waves the  spectral peak is at  the 

Coriolis frequency f .  The  characteristic length X0 - c/ f R is then  determined by the Rossby radius R. 
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At mid-latitudes R - 20-40km. The condition for the validity of (12) and (16) is then  that k < q,/uoR, 

i.e., that length scales X > 27r(uo/~)R - 10-20km  be considered. 

For  BIG  waves, one  has the relation k 2 F ~ ( k ) / w ( k ) 2  = (p*c2)- lU(k) ,  where p* is the average  water 

density and U ( k )  is the potential  spectrum (which can  be inferred from  satellite  altimeter  data). In 

Fig. 2 we display an example of such a U ( k ) ,  showing the behavior discussed above. This theoretical 

spectrum  has been  confirmed by satellite  altimeter observations of sea surface height variations on scales 

from about 70km to  an almost 103km [ll] .  

As a preliminary test of our theory, in Figs. 1 and 3 we contrast wavenumber spectra of chlorophyll 

concentration fields observed in two different regions, the first in  which  BIG  waves dominate  the energy 

spectrum in the given range,  and  the second where two-dimensional  eddy  turbulence  dominates over all 

relevant scales. The experimental data analysis approach is described in Appendix B. The first region  is 

at a high latitude of 60"N south of Iceland, and  the second at 35'N east of Honshu  Island,  Japan.  The 

spectral power  law  in  Fig. 3  indeed follows  closely the k" law predicted for eddy  induced passive tracer 

variations [2]. The region  for  which this  spectrum  has  been  estimated is near the Kuroshio  current which 

provides a strong source of  2D eddy  turbulence. Fig. 1 displays a much steeper power  law behavior 

consistent with predictions based on  BIG  waves, equation (41) and  the discussion below it. In order 

to appreciate  the relative importance of eddy turbulence as compared to  that of BIG  wave turbulence, 

we also analyzed (based on satellite  altimeter  measurements)  the SSH variations in both regions and 

estimated power spectra of the two basic components  contributing  to  the SSH signal. In Figs. 5  and 

5 we show the  spectra of the BIG  wave component (solid curves) and of the eddy-induced  component 

(dashed curves). Evidently, the relative level of BIG  wave turbulence in the  high-latitude region, Fig. 5, 

is  much greater  than  that of eddy  turbulence,  whereas in the low-latitude region, Fig.5, the opposite 

is true. As discussed in the  Introduction,  the dominance of BIG wave turbulence in the'high-latitude 

region of Fig.1 is due to  the fact  that  the energy of eddy turbulence is generated in the high wavenumber 

range of the  spectrum.  The chlorophyll concentfation field yielding the  spectrum in Fig. 3 is  shown in 

Fig. 6. 

A Asymptotics of the spectral integral 

Consider an integral of the form 

with o and /3 taking any real values. We divide the analysis into several cases. 

(i) If o < 0 and /3 < 2, I ( r )  remains finite as T + 0, with the former  ensuring  convergence at small 
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z and  the  latter ensuring convergence at large x .  On finds then 

and so on. The most  singular  term  produced by each  pair of derivatives effectively decreases 1 0 1  by p .  
This  procedure therefore allows the first n Taylor coefficients of I ( r )  to  be  computed, where n is the 

largest integer such that 2101 - nb is still positive. The (n  + 1)st derivative produces an integral whose 

most singular term produces a divergence at r = 0, i.e. an effective positive value of D .  This case  is 

handled in  (iii)  below. The result is a subleading, (but leading nonanalytic) contribution  to I ( r )  given 

exactly by the  last line of (51), but  with D < 0. 

(ii) If D 2 0 and P 5 0 [which includes the possibility that ,B = 0 could  correspond to  ln(l/z) 

behavior], the  singularity at small z makes I ( r )  divergent for all values of r.  

(iii) If D > 0 and 0 < P < 2 ,  I ( r )  is finite for any r > 0, but diverges as r + 0 due  to  the singularity 

at small z. Making the  substitution u = x / r 2 / 8  one  obtains 

where o(1) signifies neglected terms vanishing as r + 0. The condition p < 2 is required so that 

r2/O-l + 0 as r + 0 in the second  line. One requires the inequality D > 0 here for convergence at large 

u. If, pursuant  to  the discussion in (i) ,  the divergent integral was obtained as the most singular term 

of the (n + 1)st derivative of (49) with  some initial value DO < 0 [so that D = DO + (n  + 1)p/2], then 

reintegrating  (51) n + 1 times  produces a subleading contribution with  power law rn+1-2"/o = r-2u0/B. 

Using the  properties of the I' function it is elementary to show, as claimed  in the last line of (i),  that 

this  term  then takes exactly  the form (51) with D replaced by DO. 
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(iv) In the special case a = 0 and 0 < ,f3 < 2, I ( 0 )  is still divergent due to  the (now logarithmic) 

singularity at small z. This case is most  simply treated by considering the limit a + 0-. Equation (49) 

produces I(O), while the leading power law correction can  be  obtained by examining the derivative 

Integrating  this result produces a term in I ( r )  varying as Combining this with I (0)  we obtain 

Taking now the limit a + 0, the first term produces a logarithm, while the  last  term produces the finite 

result 2AJ‘’(1) = 2A&(l) = -2A&, where C = 0.577215.. . is Euler’s constant.  Thus for a = 0 and 

0 < p < 2 we finally obtain 

I ( T )  = 2Ad[ln(l/r) - i- O(1). (54) 

(v) If ,f3 > 2 the integral defining I (0 )  is convergent at small z for any value of u, positive or negative. 

If a > 0 the  integral is convergent at large z as well and (49) remains valid.  However, if u 5 0 the integral 

fails to converge at large z. Physically, however, this is an  artifact of the power  law approximation for 

$z), which must saturate  to a finite value at z 2: 5, 5 being the correlation radius of the wave  field. 

With  this cutoff, for u 5 0 one finds a strong cutoff dependent I (0)  - [ l -  5-‘]/a [- In([)  for u = 01. 
(vi) In the special case ,f3 = 2 the integral defining I (0)  is  convergent at small x if 0 < 0 but is 

divergent at large x.  One  again  obtains  the cutoff dependent result I (0)  - [ l -  5-‘7/a. Derivatives with 

respect to T again increase the effective  value of u, and  the discussion in (i) is relevant to  the  extraction 

of the leading singular term which arises when this effective  value first becomes positive. If a > 0, I (0 )  

is now convergent at large z but divergent at z = 0. The  substitution u = x / r  then yields the ezact 

power  law  form 

Using the result that  the  angular average of eik.% over  all directions j7: is  given  by 

we obtain, with i k  + l/u, 
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where in the  last line relation 6.631.1 (p. 716) in [17] has been  used. Finally, if u = 0, I ( r )  contains a 

logarithmic divergence at large 2.  Applying  a cutoff at x = 5, one  obtains 

where the 0(1)  correction depends  on  the detailed implementation of the cutoff. 
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Figure 1: Power spectrum of chlorophyll-a fluctuations in a 180kmx 2 5 0 h  ocean area  south of Iceland, 
as reported in Ref. [4] based on analysis of the  Landsat  multispectral  imagery:  triangles represent 
the experimental data,  the dashed line is a IC-2.g2 power  law found as a lest-square fit to  the  data. 
[Reproduced courtesy of the  authors]. 

Figure 2: Theoretical spectrum of sea surface height variations [proportional to  the potential  energy 
spectrum, U ( k ) ] ,  dominated by the inverse cascade of BIG  wave  energy. The  computation is based  on 
that in Ref. [lo], with an assumed  geographic latitude of 20'. 

Figure 3: Power spectrum of chlorophyll-a fluctuations in an  ocean area  east of Honshu Island (Japan), 
based on analysis of the  OCTS multispectral imagery  obtained  from  the  ADEOS  satellite (courtesy of 
the  Japanese Space Agency  NASDA). Dashed line:  power  law IC" for  compa;rison. 

Figure 4: Power spectra of sea surface height fluctuations in a region south of Iceland. Based  on analysis 
of Topex/Poseidon  ocean  altimeter  measurements  [Glazman and Cheng, 19991. Solid curve represents 
the component of the  total SSH spectrum associated with the vortical motions. Dashed  curve represents 
the component  caused by the (much faster)  gravity-wave motions. Both spectra  are  proportional  to  the 
potential  energy of the corresponding type motions.  Dotted line (IC-"/3) corresponds to  the Kolmogorov 
k-5 /3  law for the inverse cascade of energy through  the  spectrum of 2D eddy  turbulence. 

Figure 5: Power spectra of sea surface height fluctuations in a region east of Honshu  Island,  Japan. Solid 
and dashed curves are as in Fig. 5. The  dotted curve  corresponds to  the  Kraichnan IC-3 law  for 
the direct cascade of enstrophy  through  the  spectrum of  2D eddy turbulence. 

Figure 6: Chlorophyll-a field corresponding to Figs. 3 and 5. 
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